Table 6. Powder diffraction data of quinhydrone

Tric	linic	Monoclinic					
d	Intensity	d	Intensity				
5·44 Å	S	5·34 Å	S				
3.77	w	3.98	w				
3.12	m	3.58	m				
3.06	S	3.22	m				
2 •78	m	3.08	S				
2 ·66	m	2 ·87	w				
2.54	m	2.72	w				
2.32	W	2.59	m				
2 ·16	m	2.42	m				
2 ·01	W	2.30	m				
1.90	w	2.15	w				
1.82	w	2.09	w				
1.76	W	1.80	w				
1.75	w	1.69	w				
1.66	w	1.29	m				
1.60	m						
1.51	W						
1.16	W						

References

- BRIEGLEB, G. (1961). Elektronen-Donator-Acceptor-Komplexe. Berlin, Gottingen, Heidelberg: Springer-Verlag. BROWN, D. S., WALLWORK, S. C. & WILSON, A. (1964).
- Acta Cryst. 17, 168.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS: Oak Ridge National Laboratory.

- Chu, S. C., Jeffrey, G. A. & Sakurai, T. (1962). Acta Cryst. 15, 661.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 754.
- Foz, O. R. & PALACIOS, J. (1932). Anales Soc. Españ. Fis. Quim. 30, 421.
- HANSON, A. W. (1963). Acta Cryst. 16, 1147.
- MATSUDA, H., OSAKI, K. & NITTA, I. (1958). Bull. Chem. Soc. Japan, 31, 611.
- MULLIKEN, R. S. (1952). J. Amer. Chem. Soc. 74, 811.
- NAKAMOTO, K. (1952). J. Amer. Chem. Soc. 74, 1739.
- OSAKI, K. & NAKAI, H. (1963). Ann. Meeting Crystallographic Soc. Japan.
- PALACIOS, J. & FOZ, O. R. (1935). Anales Soc. Españ. Fis. Quim. 33, 627.
- PALACIOS, J. & FOZ, O. R. (1936). Anales Soc. Españ. Fis. Quim. 34, 779.
- ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.
- SAKURAI, K. (1958). Acta Cryst. 11, 840.
- SAKURAI, T. (1962). Acta Cryst. 15, 443.
- SAKURAI, T. & YABE, M. (1958). J. Phys. Soc. Japan, 13, 5.
- SLY, W. G., SHOEMAKER, D. P. & VAN DEN HENDE, J. H.
- (1962). ERFR2: ESSO Research and Engineering Co.
- STADLER, H. P. (1950). Acta Cryst. 3, 262.
- SUZUKI, K. (1956). Busseiron Kenkyu, 102, 5.
- TROTTER, J. (1960). Acta Cryst. 13, 86.
- VAN DEN HENDE, J. H. (1961). ERBR1: ESSO Research and Engineering Co.
- WALLWORK, S. C. (1961). J. Chem. Soc., p. 494.

Acta Cryst. (1965). 19, 330

330

The Crystal Structure of α-Keto-1,1'-trimethyleneferrocene*

BY NOEL D. JONES,[†] RICHARD E. MARSH, AND JOHN H. RICHARDS

The Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A.

(Received 12 August 1964)

The crystal structure of α -keto-1,1'-trimethyleneferrocene has been determined by three-dimensional X-ray diffraction analysis. This compound, C₁₃H₁₂OFe, crystallizes in the centrosymmetric monoclinic space group $P2_1/a$. The unit cell contains four molecules and has the dimensions

$a = 22.981 \pm 0.002, b = 7.381 \pm 0.001, c = 5.833 \pm 0.001$ Å; $\beta = 93.38 \pm 0.02^{\circ}$.

A trial structure was obtained from the locations of the iron-iron vectors in the (001) Patterson projection and was refined in both two and three dimensions by the method of least squares. The final reliability factor, R, was 0.067.

The dihedral angle between the best planes through the two nearly planar cyclopentadienyl rings is about 8.8° . The average ring carbon-carbon bond distance is 1.424 ± 0.010 Å and the average iron-carbon bond distance is 2.039 ± 0.006 Å. The principal thermal motion is a vibration of the entire molecule in a direction roughly perpendicular to the *ab* plane.

Introduction

The stable bridged 'sandwich' compound α -keto-1,1'trimethyleneferrocene, C₁₃H₁₂OFe (I), may be prepared by the procedure of Rinehart & Curby (1957).

[†] Present address: Mineralogisch-petrographisches Institut der Universität, Abteilung für Kristallographie und Strukturlehre, Sahlistrasse 6, Bern, Switzerland.

^{*} Contribution No. 3149 from the Gates and Crellin Laboratories of Chemistry.

The determination of the crystal structure of this compound was prompted by its unusual geometry and more specifically by recent studies (Hill & Richards, 1961; Richards & Hill, 1959) on the reactivities of α -metallocenyl carbonium ions.

These X-ray results are of significance in the interpretation of the solvolysis rate of α -acetoxy-1,1'-trimethyleneferrocene which is depressed by a surprisingly small degree (*i.e.* by a factor of 291) when compared with an analogue in which the α -carbon atom can be coplanar with the cyclopentadienyl ring to which it is attached, *e.g.* α -acetoxyethylferrocene. The reasons for this small rate difference will be discussed in detail in a paper on the mechanistic interpretation of these solvolytic processes.

Experimental

 α -Keto-1,1'-trimethyleneferrocene crystallizes from nheptane in the form of red-orange monoclinic needles melting at 144.0–144.5°. From a crystal mounted to rotate about the needle axis, c, rotation and equiinclination Weissenberg photographs were obtained for layers 0 through 3. The absence on these photographs of reflections 0k0 with k odd and h0l with h odd is indicative of the centrosymmetric space group $P2_1/a$.

The unit-cell dimensions were obtained from Straumanis-type, zero-layer Weissenberg photographs taken at room temperature with nickel-filtered copper radiation using crystals mounted about the b and c axes. The measured Bragg angles for 189 h0l and hk0 reflections were used in a least-squares calculation of the unit-cell dimensions; the resulting values are

$$a = 22.981 \pm 0.002, \ b = 7.381 \pm 0.001, c = 5.833 \pm 0.001 \text{ Å}; \ \beta = 93.38 \pm 0.02^{\circ}, [\lambda(Cu \ K\alpha_1) = 1.54051; \ \lambda(Cu \ K\alpha_2) = 1.54433 \text{ Å}]$$

where the uncertainties listed are about ten times the calculated standard deviations. Absorption and eccentricity parameters were included in the least-squares calculation but were found to be negligible.

The density measured by flotation in mixed solvents was found to be 1.60 g.cm⁻³; the density calculated on the basis of four molecules of $C_{13}H_{12}$ OFe (M.W. 240.1) in the unit cell is 1.61 g.cm⁻³.

In order to minimize absorption errors a small acicular crystal, approximately 0.1 mm. in diameter and with roughly hexagonal cross section, was chosen for the *c*-axis intensity photographs. Reflections *hk*0 to *hk5*, inclusive, were recorded using the multiple-film, equi-inclination Weissenberg technique. (α -Keto-1,1'-trimethyleneferrocene is quite stable to X-rays, there being no apparent change in the crystal after exposure to radiation for over 250 hours. However, all X-ray photographs taken from crystals of this compound exhibit a high background due to fluorescent scattering by the iron atoms.) Some difficulty was experienced in cutting a crystal in order to obtain satis-

. ...

factory diffraction photographs about the b axis. The long, slender needles fractured unevenly; after several dozen unsuccessful attempts, a rather unsatisfactory fragment was mounted. From this crystal the reflections h0l to h2l, inclusive, were recorded as before. Intensities were estimated by visual comparison with a graduated scale prepared from the crystal mounted to rotate about the c axis. After correction for Lorentz and polarization effects, the F^2 values from the several photographs were put on the same arbitrary scale using a weighted least-squares procedure. Because of a number of serious discrepancies in intensities of high-angle reflections measured about the two axes (and, in retrospect, apparently caused by misorientation of the crystal mounted along b), the b-axis data were used only to scale the c-axis data, the latter being used in all subsequent calculations.

Determination and refinement of the structure

The x and y coordinates of the iron atom were readily determined from iron-iron vector peaks in the (001) Patterson projection. Using these coordinates, the contributions of the iron atom to about 100 of the largest hk0 structure factors were calculated. For about 25 of these reflections the iron atom contributions were sufficiently large to determine with certainty the signs of the structure factors. A (001) electron density map prepared from these phased structure factors clearly showed the positions of the iron atom, the non-carbonyl carbon atoms of the bridge and one carbon atom in each ring. The atoms of the carbonyl group and the rest of the ring atoms were poorly resolved owing to overlaps in projection. However, from consideration of the geometry of the molecule it was possible to assign trial coordinates to all atoms.

The two-dimensional structure was refined rapidly using a block-diagonal least-squares program written for the Burroughs 220 computer. This program minimizes the quantity $\Sigma w (F_{\rho}^2 - F_c^2)^2$. Atomic form factors for carbon and oxygen were an average of the values of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) and Hoerni & Ibers (1954) and for iron were taken from Thomas & Umeda (1957). Each observation was weighted according to the function $\sqrt{w} = 1/f_c$, where f_c is the form factor of carbon at the calculated value of $\sin \theta / \lambda$. (We have found this weighting function frequently useful for rapid convergence in the initial stages of least-squares refinement.) After several least-squares cycles using individual isotropic temperature factors, the R index, based on observed reflections only, was 0.085.

From packing considerations, approximate z coordinates were calculated for all atoms. The first cycle of three-dimensional structure-factor calculations and least-squares refinement was run using isotropic temperature factors with B=3.0 Å² for all atoms; the observations were weighted as before. The R index was 0.50 and there were large negative z shifts indicated for

	$T = \exp\left(-B_{11}h^2 - B_{22}k^2 - B_{33}l^2 - B_{12}hk - B_{13}hl - B_{23}kl\right).$											
	x	У	Z	B_{11}	B_{22}	B ₃₃	B_{12}	B_{13}	B ₂₃			
Fe	1515(•4)	1259(1)	1913(1)	12(-2)	75(2)	211(4)	-4(1)	-3(1)	4(3)			
0	955(3)	4880(7)	6090(9)	26(2)	188(13)	274(21)	34(7)	26(9)	-83(22)			
C(1)	1584(3)	3702(8)	3418(12)	12(1)	88(11)	264(25)	-13(6)	-12(9)	-52(21)			
C(2)	1925(3)	2429(9)	4727(11)	14(2)	115(12)	262(26)	-9(6)	-32(10)	-13(24)			
C(3)	2350(3)	1701(10)	3344(12)	12(2)	157(15)	293(28)	8(6)	-40(10)	-8(26)			
C(4)	2278(3)	2544(9)	1141(14)	12(2)	115(13)	404(33)	-15(7)	10(11)	9(29)			
C(5)	1794(3)	3767(8)	1161(12)	15(2)	85(11)	264(25)	-23(6)	-11(10)	55(22)			
C(6)	634(3)	985(8)	1599(13)	12(2)	101(13)	344(29)	-22(6)	-4(11)	-37(24)			
C(7)	892(3)	-438(9)	3029(12)	17(2)	120(13)	243(25)	-28(7)	10(10)	15(24)			
C(8)	1285(3)	-1426(8)	1736(14)	14(2)	56(11)	446(33)	-9(6)	23(12)	3(24)			
C(9)	1275(4)	-637(9)	- 508(13)	22(2)	116(13)	297(29)	-15(8)	-26(12)	-125(27)			
C(10)	873(3)	815(8)	- 580(12)	14(2)	102(12)	244(26)	-6(6)	-28(10)	-52(22)			
C(11)	1014(3)	4421(8)	4123(12)	15(2)	78(11)	256(25)	-3(6)	18(10)	- 49(22)			
C(12)	501(3)	4343(9)	2391(12)	14(2)	108(12)	275(26)	22(6)	1(10)	-47(24)			
C(13)	224(3)	2460(9)	2396(13)	11(2)	148(14)	351(31)	- 6(7)	8(11)	- 68(29)			

Table 1. Final heavy atom parameters and their calculated standard deviations All values have been multiplied by 10⁴. The temperature factors are expressed in the form $T = \exp(-R_1 h^2 - R_2 h^2 - R_1 h^2 - R_2 h h - R_2 h h - R_2 h h)$

many atoms; accordingly, the molecule was moved as a unit by -0.05 in z and another structure-factor leastsquares calculation was performed. R for this calculation dropped to 0.37 and the shifts in the z coordinates, although still mostly negative, were considerably smaller. Several more least-squares cycles, in which the individual isotropic temperature factors were permitted to shift, saw R decrease rapidly to 0.12. At this point anisotropic temperature parameters were introduced for the iron atom and the weighting function was changed to that suggested by Hughes (1941). After two more least-squares cycles R had dropped to 0.092. Contributions of the hydrogen atoms were then included in the structure factors, based on assumed C-H bond distances of 1.0 Å and isotropic temperature factors equal to those of the heavy atoms to which they are attached. The parameters of the hydrogen atoms were not refined. Anisotropic temperature factors for the oxygen atom and carbon atoms were introduced, and R dropped to 0.080 after four more least-squares cvcles.

The weighting scheme was then changed to

$$\sigma(F^2) = 1/\sqrt{w} = KF_o^2 \text{ for } F_o \ge 3.0$$

= 3KF_o for F_o < 3.0

which we believe adequately represents the uncertainties in F_o^2 . After five more cycles of least-squares, R was 0.067 and no parameter shift was larger than onethird of its standard deviation; the refinement was considered complete.

A total of 1466 reflections were included in the final structure-factor calculation, of which 1196 contributed to the least-squares sums (and to the R index). Of the latter, 14 are 'less than' reflections with calculated structure factors larger than their estimated threshold values. Table 1 lists the final heavy-atom parameters and their standard deviations; Table 2 gives the assumed parameters of hydrogen atoms. The standard deviations in the heavy-atom parameters were calculated from the diagonal terms of the inverse block-diagonal matrices. The final observed and calculated structure factors are given in Table 3.

The observed structure factors and their calculated signs were used in the calculation of a three-dimensional electron density map, shown in Fig. 1. A threedimensional difference map, shown in Fig. 2, was also prepared using ΔF 's derived from structure factors calculated from only the heavy atoms, but with the signs of the F_o 's being those of the final F_c 's. Electron

 Table 2. Assumed hydrogen atom parameters

The	The temperature factors are expressed in the form $T = \exp((-R \sin^2 \theta/\lambda^2))$									
	Bonded to	x	y 5000 971	,. Ζ	В					
H(14)	C(2)	0.187	0.211	0.641	3.5					
H(15)	$\widetilde{C(3)}$	0.267	0.075	0.374	4.4					
H(16)	C(4)	0.252	0.228	-0.050	4.1					
H(17)	C(5)	0.164	0.453	0.019	3.2					
H(18)	C(7)	0.080	-0.063	0.465	3.9					
H(19)	C(8)	0.153	-0.246	0.228	3.7					
H(20)	C(9)	0.153	-0.109	-0.183	3.7					
H(21)	C(10)	0.073	0.162	- 0.192	2.7					
H(22)	C(12)	0.066	0.455	0.076	3.8					
H(23)	C(12)	0.023	0.531	0.264	3.8					
H(24)	C(13)	-0.015	0.245	0.140	4.4					
H(25)	C(13)	0.013	0.219	0.403	4.4					

Fig. 1. The final composite three-dimensional electron density map projected onto (001). The contours are drawn at 4, 5, 6,...e.Å⁻³, except for the iron atom, where the contours are at 5, 10, 15,...e.Å⁻³,

Table 3. Observed and calculated structure factors

The three columns within each group contain the values of h, $10F_o$ and $10F_c$. Observed values indicated by an asterisk (*) were of doubtful validity and were omitted from the least-squares calculations and from the R index.

0 4 8 10 12 14 16 18 20 22 24 26	hoo • 1089 195 144 569 486 259 455 93 270 56 254 163	4986 -1286 184 137 -547 452 264 -471 -92 288 -26 -244 159	10 140 11 370 12 360 13 512 14 402 15 221 16 50 17 268 18 206 19 55 20 - 57 21 - 57 22 226 23 122	131 -388 352 513 -476 196 -41 -263 200 -23 -15 34 -294 -148	3 480 4 313 3 325 6 50 7 407 8 299 9 328 10 295 11 102 12 108 13 228 14 138 15 128 16 48	449 -280 -300 94 -383 308 330 -273 85 -92 -203 140 124 -11	1 270 2 555 3 146 4 794 5 153 6 545 7 157 8 132 9 359 10 154 11 581 12 124 13 122 14 < 47	- 298 596 137 - 818 157 - 561 - 154 - 117 - 377 157 608 128 122 - 40	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	550 85 -534 263 2 -100 481 228 507 196 -38 -85 -458	$\begin{bmatrix} \overline{1} & 2 \\ \overline{2} & \overline{3} \\ \overline{3} & \overline{3} \\ \overline{5} & \overline{3} \\ \overline{7} & \overline{7} \\ \overline$	19 314 10 -68 11 74 10 12 12 -331 13 -54 19 102 11 -32 16 112 16 112 16 48 11 -258 57 -58 13 53	$ \begin{vmatrix} 17 & 16; \\ 18 & 6; \\ 19 & < 7; \\ 20 & < 7; \\ 21 & 204 \\ 22 & 213 \\ 24 & < 5; \\ I & 9; \\ 24 & < 5; \\ I & 9; \\ 3 & 54; \\ 3 & 54; \\ 5 & 43; \\ 5 & 43; \\ 5 & 6; \\ 20; \\ 6 & 20; \\ \hline \end{vmatrix} $	- 159 - 86 - 61 - 189 - 205 - 138 - 38 - 306 - 306 - 306 - 306 - 675 - 560 - 428 - 213	4 5 6 7 8 9 10 4 11 12 13 14 15 5 16	50 5 67 6 134 15 120 -13 136 -13 136 -13 44 44 51 6 210 22 93 -9 46 -5 38 86 95 10	52 5 57 6 52 7 30 8 52 9 53 10 6 11 85 12 21 13 97 14 33 15 4 16 93 17 93 18	96 173 < 57 413 61 430 110 78 < 65 162 < 65 < 65 < 89	-92 152 - 1 420 -60 -422 131 -91 -44 149 -33 - 2 -13 -86	8 9 10 11 12 13 0 1 2 3 4 5	132 45 64 287 175 <u>h45</u> 195 68 72 51 223 51	132 -36 -27 50 -247 145 -224 63 -65 55 225 -46
4 6 8 10 12 14 16 18 20	h01 201 278 750 630 673 149 88 248 137 294	166 274 -724 -570 609 -136 -84 240 -131 -297	25 86 26 85 27 49 28 134 29 90 <u>h11</u> 0 * 1037 1 171 2 204 3 618	85 87 67 -130 -92 -1286 159 207 -625	18 186 19 234 20 116 21 55 23 174 24 79 25 59 1 468 2 179 3 292	-211 -258 114 3 63 178 -73 -56 -511 -182 277	15 528 16 63 17 65 18 55 19 222 20 114 21 282 22 < 68	-533 -82 102 44 219 125 -300 54 -25 100 277 -77	6 36 7 387 8 190 9 141 10 128 11 323 12 45 13 94 14 48 15 249 16 61 17 276	-12 394 -164 140 106 -328 -50 91 -25 249 -61 -295	1 5 2 5 3 4 4 5 1 6 2 7 3 8 4 9 9 10 4 11 2	10 17 -542 13 -630 101 420 17 -30 188 176 188 176 188 246 186 -293 144 -444 187 58 170 454 196 301	7 200 8 200 9 322 10 280 11 60 12 254 13 211 6 13 1 81 2 17	-222 -328 296 -66 256 252 124 68 2176		186 200 190 200 93 -6 69 5 34 154 -16 56 1 132 14 44 -3 36 -1 51 -4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	87 276 < 67 < 61 < 55 136 104 549 105 141 237 435	85 242 7 33 3 -144 - 87 -577 97 -129 208 456	6 7 8 9 10 11 12 13 14 15 16 1 1	174 63 153 50 246 67 39 38 204 33 61 57	- 189 - 39 - 151 - 49 245 60 3 0 - 212 - 7 77 68
24 26 28 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	166 76 124 551 345 886 <u>h02</u> • 716 520 447	156 83 -117 -660 330 977 -800 465 -392	4 171 5 266 6 571 7 378 8 172 9 122 10 722 11 309 12 < 73 13 181 14 357 15 398	-116 -207 -537 358 -163 -121 658 303 13 185 -367 -410	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	329 161 -328 -211 198 302 393 22 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-83 -49 -279 -32 24 -169 -36 287 -474 -174	18 98 19 89 20 65 21 338 22 50 23 111 24 40 1 229 2 206 3 552 4 176 3 459	-83 -91 -60 314 38 -102 27 -210 -180 -588 -153 500	12 3 13 3 14 2 15 16 17 1 18 3 19 1 20 1 21 1 22 1	71 390 11 -306 16 -232 54 51 55 - 5 57 160 57 372 39 -144 28 -124 56 -154 59 -186 59 -186	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-392 -396 	13 14 0 1 2 3 4 5 5 7	180 -16 146 14 571 -58 259 23 276 24 152 13 719 63 44 6 800 -61 121 -11	2 7 46 \$\vec{s}\$ \$\vec{s}\$ \$\vec{10}\$ 82 \$\vec{11}\$ 31 \$\vec{12}\$ 32 \$\vec{13}\$ 38 \$\vec{14}\$ 62 \$\vec{11}\$ 11 \$\vec{0}\$ 10 \$\vec{1}\$	57 336 156 242 < 61 237 < 65 244 <u>h43</u> 359	50 -350 -147 -243 - 9 249 45 232 390 59	2 3 4 5 6 7 8 9 10 11 12 13	229 36 95 36 198 57 44 44 194 42 73 41	281 5 106 -31 -195 -50 26 -31 197 11 -65 - 8
8 10 12 14 16 18 20 22 24 26 4 7	504 658 208 323 245 114 255 < 63 137 46 101	-526 742 195 -327 221 85 -266 21 157 44 -93	16 293 17 130 18 19 226 20 195 21 96 22 95 23 <	279 -122 49 255 -203 -103 107 -70 194 158 -79	4 286 5 418 6 206 7 155 8 166 9 272 10 172 11 94 12 < 43 13 70 14 179	-270 -434 192 154 -130 256 -168 -93 28 -69 196	9 314 10 172 11 601 12 < 79 13 539 14 198 15 299 16 182 17 387 18 < 95 19 < 98	323 177 631 - 53 \$580 175 -290 182 413 9 -35	6 62 7 61 8 200 9 348 10 185 11 405 12 53 h24 0 73 1 185	-52 -43 177 -356 188 444 64 -89 188	23 24 $25 < 26$ 27 $1 3$ $2 < 3$ $3 1$ $4 5$	50 204 52 -10 47 43 50 -53 - -53 - -477 47 354 52 -29 24 127 49 570	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8 < 9 < 10 11 < 12 13 < 14 15 < 16 17 < 18 <	47 -6 49 -7 715 73 50 -3 203 -13 54 -3 338 -3 55 - 196 1 57 - 56 -	63 2 41 3 31 4 50 5 97 6 54 7 735 8 59 9 98 10 69 11 32 12	114 44 228 45 298 124 47 97 308 110 314	-118 31 -223 8 300 -120 -34 88 -308 98 314	14 1 2 3 4 5 6 7 8	151 293 245 247 329 220 261 208 366	- 123 - 300 248 279 - 352 215 - 286 - 213 388
8 2 4 6 8 10 12 14 16	• 337 231 • 586 754 341 448 114 119 230	-540 264 561 496 -757 301 448 -124 -112 231	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-43 1175 324 -147 56 -948 -490 -31 4 318	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128 -254 -91 -28 -76 181 108 -81 -18 -219 -28 -316	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-48 -266 -26 318 - 4 40 9 -180 2 -154 824	2 67 3 366 4 107 5 208 6 58 7 233 8 < 40 9 315 10 85 11 54 12 89	-49 -364 87 183 -45 231 2 -320 -67 -36 -84	5 3 6 5 7 1 8 < 9 7 10 8 11 12 13 3 14 2 15 1 15 1	20 -353 39 -579 71 -170 73 -9 309 738 32 -63 35 -80 35 -387 20 -226 14 103	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-270 36 -205 177 432 -340 -165 -113 -265 269 228	19 < 20 21 < 22 23 < 24 25 < 26 0	55 2 63 -2 63 -1 55 -1 50 -1 142 -1 <u>h41</u> -1 428 -4 73 -7	65 13 143 14 10 15 24 16 64 17 59 18 14 19 39 20 21 22 51 I 1 7	50 131 59 208 < 57 108 < 51 158 < 42 131 138	16 132 -58 -195 - 5 93 34 162 -18 -134 -128 87	9 10 11 12 13 14 15 16 17 18 19 20	114 116 104 336 226 204 < 56 68 198 193 155 < 59	119 -124 107 -324 -270 214 -38 82 202 -187 -130 38
18 20 22 24 4 6 8	149 172 150 151 91 <u>h04</u> 557 132 148	-145 -192 149 143 82 626 -117 -141 340	0 320 1 271 2 348 3 422 4 110 5 492 6 354 7 464 8 543 9 279	-333 -262 350 410 92 473 -357 -507 545 -261	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-179 268 213 -89 61 -152 69 146 -238	4 227 5 208 6 286 7 424 8 152 9 240 10 326 11 103 12 142	241 219 296 -480 -152 262 -340 75 -118	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271 52 -92 -47 -255 89 206 -10 56 36 351	16 17 18 19 1 20 2 21 1 22 23 1 24 1 25 1 3 3 3 3		h34 0 290 1 212 2 110 3 100 5 200 6 69 7 199 8 < 44	-216 87 -94 7 -218 201 5 27 -206 4	1 < 2 3 4 < 5 6 7 < 8 9 10 11 <	73 - 652 71 73 - 76 - 179 -11 528 -5. 79 605 64 223 24 174 -11 90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105 61 498 83 141 85 173 47 246 128 130	-52 -554 -70 140 74 179 50 -260 101 -124	20 21 22 23 24 0 1 2 3 4	<pre> 55 94 118 118 <u>h51 247 < 85 202 426 </u></pre>	-34 96 114 -125 255 2 -36 186 -417
10 12 14 16 18 20 22 2	48 313 77 210 271 95 109 <u>h05</u> 164	-56 -334 78 207 -289 87 106	10 339 11 272 12 393 13 97 14 83 15 96 16 188 17 254 18 147 19 67 20 65	343 282 392 -94 70 -94 187 266 -162 -56 17	2 201 3 73 4 40 5 159 6 132 7 176 8 178 9 156 10 71 11 140 12 230	-69 -10 155 138 185 -188 -188 -164 -81 -168 241	h22 0 77 1 69 2 162 3 401 4 167 5 349 6 51 7 310 8 208 9 601	64 68 145 396 -131 -363 -55 -309 200 671	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-63 -372 57 -146 6 310 16 -350 -162 -65	2 3 4 5 6 7 8 2 7 8 2 10 11 12 1 12 1 12 1 12 1 12 1	3 354 52 59 51 397 53 274 60 -244 55 -343 59 270 51 -268 50 256 55 418 54 -116	9 34 10 221 11 19(12 311 13 55 14 132 15 204 16 166 17 91 18 35 19 87	-32 -225 206 298 45 129 -204 -167 85 35 86	12 13 14 15 16 17 < 18 19 < 20 < 21 22	475 -4 93 -1 135 11 192 -14 98 4 98 5 192 -14 116 5 114 -4 122 10 181 18	91 13 90 14 21 84 86 0 10 1 64 2 74 3 41 4 03 5 87 8	228 <u>h44</u> 73 42 340 60 123 < 43 296	52 299 -353 62 124 - 4 312	5 6 7 8 9 10 11 12 13 14 15	241 167 < 90 112 247 299 118 348 275 98 152	-248 154 45 102 285 -292 -108 351 -284 90 153
1 6 8 10 12 14 16 18 20 4	399 82 145 209 126 219 181 < 36 144 166	-386 77 156 -269 -114 258 -174 6 169 -205	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-288 140 184 12 139 -89 -94 -117 -211 420 172	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97 -55 55 -155 -66 199 36 -84 92 -346 -88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104 -101 - 1 -402 25 260 -66 178 -21 -380 -95	$\begin{array}{c} \frac{h25}{89}\\ 0 & 89\\ 1 & 144\\ 2 & < 30\\ 3 & 49\\ 4 & < 32\\ 5 & 214\\ 6 & 47\\ 7 & 216\\ 8 & < 36\\ 9 & 166\end{array}$	80 - 156 - 6 - 10 253 - 43 - 220 8 - 188	13 14 1 0 2 3 3 1 4 5 3 6 3	10 60 19 -157 12 18 18 -278 13 499 11 334 18 94 13 -83 15 -320 15 -329	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	154 -102 266 -85 185 -210 -430 31 51 3 272	1 2 3 4 5 6 7 8 9 0 1 1	z11 21 633 -71 181 17 667 74 106 10 280 22 244 -22 363 -33 167 -14 149 12 88 -1	19 7 14 6 74 9 41 10 05 11 63 12 32 13 97 14 42 15 30 16 13 17 40	 45 347 45 45 45 279 52 201 50 48 45 	-22 -301 22 28 24 263 22 -191 -55 -56 - 9	16 17 18 19 20 21 $\overline{1}$ $\overline{2}$ $\overline{3}$ $\overline{4}$ 5	190 114 155 105 198 150 268 361 85 172 296	-192 38 -112 -82 193 136 -288 -389 73 -191 293
1 2 3 4 5 6 7 8 9	h10 334 966 538 540 234 458 385 417 158	394 -1214 -593 574 -232 -474 470 -428 -166	3 374 6 176 7 58 8 379 9 481 1 0 75 1 27 2 510	-363 -172 32 -414 460 68 - 4 500	$ \frac{\overline{5}}{\overline{6}} = \frac{123}{138} \\ \overline{7} = 301 \\ \overline{8} = 181 \\ \overline{9} = 217 \\ \overline{10} = 116 \\ \overline{11} = 134 \\ \underline{5} = 0 \\$	117 -135 308 191 -230 -122 -129 218	$\begin{array}{cccc} 21 & 155 \\ 22 & 85 \\ 23 & 238 \\ 24 & < 65 \\ 25 & 196 \\ 26 & 57 \\ \overline{1} & 628 \\ \overline{2} & 59 \\ \overline{3} & 369 \\ \overline{4} & 38 \end{array}$	161 -74 244 30 -209 -45 -592 63 370 -27	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	20 195 50 115 -48 -213 78 40 42 117	7 3 8 4 9 < 10 1 11 4 12 3 13 1 14 2 15 2 16 <	14 309 11 460 15 10 19 198 14 -436 14 -390 18 112 16 -204 3 238 5 9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-104 -158 26 -55 98 -228 -228 -236 257	12 13 14 0 1 2 3 <	328 34 160 12 211 -10 <u>h42</u> 454 4 123 -11 53 5 560 -5	10 18 24 19 94 20 1 2 71 3 13 4 53 5 25 6 70 7	156 36 43 < 42 324 < 42 67 43 106 172	156 -37 -50 13 342 4 -51 -39 -107 -152	6 7 8 9 10 11 12 13 14 15	337 191 130 161 200 301 214 <98 217 237	333 -189 -120 -138 -182 309 213 8 217 -208

Table 3 (cont.)

	h52		1 14	201	-176	1	h 55		1	h.61		1 16	85	- 89		1.14													
0	< 59	55	15	131	-107	1									1 1		-110	۰ ۱	< 35	- 29	1 7	190	-188	2	56	62	1 7	- 95	14
1	289	296	1 16	6 51	-14	1 0	157	-144				1			1 3	270	247	1 7	218	228	1.4	134	-139	3	< 43	44	8	• 308	330
2	291	- 278				1 1	162	-162	} •	116	-119	1 18	124	123	1	< 51	- 35		219	238		84	- 84	4	92	94	ē	< 90	- 24
	41	- 60	1		-01	1 .			1	314	331	19	270	283	5	93	- 88	1 9	94	-101	10	140	-142	5	168	-162	1		79
			18	181	170	1 :			2	< 95	21	ī	307	314	6	51	- 49	10	92	- 65	11	210	211		126	-118			
		~	1 19	176	103				3	233	-245	2	207	207	1 7	194	-174	1	230	-238	1.7	140	141		70	66		h 82	
5	77	-11	20	116	-110	1 4	123	-112	4	118	118	3	81	- 84		79	62		174	-144	1				- 10		0	196	- 204
6	327	330	Т	299	312	5	< 42	- 6		214	-189	÷.	112	195		114	205	1			1 13	< 61	- 13) °	< 30		1	< 67	12
7	202	197	2	206	220	6	107	-114		216	219	1 2						1 13	138	137	1 14	83	- 80	1 8	48	47	2	208	-227
8	144	-123	1 3	108	- 96	7	137	-127				1 2	114	-115	10	< 45		1 14	132	138	15	164	-166	10	142	147		6.65	. 14
9	< 65	13	1 -	90	68	8	158	151	1		400	6	115	-120	1 11	70	71	15	< 54	- 1	16	106	-116	ī	124	-117			
10	80	72	1 1	141	-126		93	88	8	< 98	- 30	7	317	314	1 12	< 40	0	16	114	104	ī	< 78	- 20	Ī	45	49	[]		
11	229	-745	1 -			1.0	51	57	9	< 98	- 38	Ĩ	< 67	- 75	13	194	-182	17	85	- 88	Ī	< 78	59	3	89	- 81	2	× 03	
		109	1 <u></u>	124	-140	1.0		44	10	< 98	23	ÿ	114	-106	14	< 34	12	1 18	84	- 88	Ť	257	215	1 4	71	61	•	61	. 59
12	204	100		167	150		63		11	289	-272	1 10	- 45	- 63	ī	252	-215	1 10	107	120	1 -			17	220	108	7	< 59	- 2
13	65	72	l ≗	99	101	1 12	140	-130	12	< 116	- 14	1 📅	305	.370	2	68	54	1			1 7			i i		.101	8	174	-175
14	179	-173	9	164	-172	13.	66	- 74	13	188	176	1 🚟	120		l Ŧ	104	270				12	190	180	Ľ		- 101	9	< 55	- 12
15	157	170	10	61	- 51	1	79	- 64	1 14	< 112	- 30	#	140		1 7			1	<u>h 71</u>		<u> ۹</u>	< 11	4	1 2	< 42		10	132	127
16	140	-155	Π	233	-216	1 2	50	- 51		< 110		13	216	122	1 2	~~	**	0	305	337	7	61	- 80	1	< 40	- 10	11	46	- 47
17	181	-164	172	168	-142	1 3	238	246		2110		1			1 2	< 43	40	1 1	192	-207	Ī	194	189	1 1	194	-186	ī	< 67	3
18	152	144	13	279	288	Ì Ì	180	176	10	(103		ł	<u>h 63</u>		1	< 42	10	1 2	118	94	1 1	276	270				2	281	294
19	51	50	1	••••		l ÷	< 42	. 1	17	271	-244	0	86	73	7	329	-302		203		1	150	167				3	< 65	42
	103	104	1	h54		1 ž	2 43	- 17	18	< 93	- 48	1	314	-320	1.1	50	- 54	1 2	170	145	1	100	-104		<u>n 80</u>	• • •	1	106	118
	1155		1			l -			19	174	163	2	< 50	- 42	1 1	151	137	1 2						•	350	343	÷.	< 61	- 7
21	177	163	0	64	- 51	1 1	109	112	T	133	130	1 3	144	128	1 📅			•	223	239		h 73		1	< 62	58	÷		
22	151	-173	1	218	-190	8	138	-148	2	< 95	- 68		< 50		1				190	159	1 .			2	170	-180	l 🖁	230	
1	175	-170	2	101	72		106	103	5	212	-235		-		1 **	104	109	7	114	107	1.			3	150	133	1	< 61	- 18
Ž	213	221	3	< 45	- 22	10	40	39	l i	116	-109								< 114	1		151	-122	4	168	-178		84	- 58
3	321	-343	4	174	152	11	< 38	15	1 7	< as		•	46	- 50	1	<u>h 65</u>			258	- 263	2	213	- 221	5	< 59	17	_	< 57	2
- Ā	356	-367		152	110	12	154	-144	1 4			7	298	-264	0	38	29	10	155	-160	1 3	169	164	6	346	164	10	147	176
5	184	176	1 .	170		13	157	-145	1 2			•	170	-141	1	167	164	1 11	< 108	34	4	227	220						
ā	98	104		3 10					1 1	< 95	83		120	- 98	1 . 2	53	- 30	1	< 103	23	5	< 54	- 22	1	5 38	- 31		h 83	
÷	100	108	1	140	-132	1			8	< 98	- 37	10	< 58	- 10	3	67	64					< 53	- 31	8	< 58	26	•	255	-276
		- 14	8	128	-134				5	376	-372	11	341	311	4	51	- 46	1			1 7	59	- 64		12	- 85	1	< 44	- 33
÷	< 03		9	131	-116		h60		10	< 08	44	12	< 53	33		181	-185	1	104	213	1	186	-179	10	229	- 250		141	140
	219	-207	10	272	255	۰ ا	205	-212	1 	2 44		13	52	- 35		43	41	13	116	-117		164	161	11	< 49	- 5		< 10	
10	206	- 208	11	217	196		288	310		`		14	< 14	. 17				10	166	-181				12	85	102		`	
11	81	86	12	50	- 43		67	- 84		110	-109		110	-916	1 :			1 1	236	244	1	2.2		13	< 44	12		123	130
12	< 67	- 51	13	< 48	5	1 :	280	744	13	380	382					34	40	2	167	-165	1	S		14	136	149	•	< 40	17
13	162	176	14	111	-109							10		- 13	12	82	314	3	< 118	61	12	89	87				6	194	-217
14	228	226			110	•	< 33	- 34				17	177	178	1	194	-181	1 7	165	-154	13	178	-189		h 81		1	< 46	- 9
			13			5	233	-232		104		11	82	78	1 2	< 38	- 16	5	166	-142	1	215	208		105	101	2	< 46	33
			18			۰	< 55	33	0	< 65	- 68	2	50	- 44	3	< 38	- 26	8	212	236	Ī	145	131		< 103	41	3	< 42	- 17
	<u>h53</u>		17	34	30	7	< 57	4	1 1	80	- 97	3	204	211	17	< 38	- 1	7	116	101	3	247	259	1			1	154	168
0	126	-130	18	< 29	- 30	8	80	108	2	< 65	22	4	157	151	3	188	178	ł ż	< 114	- 30	1 4	< 58	- 36	2	315	-324	5	47	47
1	48	-17	1	280	244		175	185	3	246	-253	3	237	-261	i i	< 14		1 -		194	5	155	132	3	< 103	24	-	- 10	
2	< 58	22	2	78	71	10	< 57	- 38	4	< 65	41	ā	< 61	2	i ÷		- 30	1 🚽	140	140	1 7	< 54	- 55	4	219	210	÷	2.0	
3	306	- 292	3	188	160	11	283	-273		779	217	÷	< 10	47	1 ÷	133	-130	1	191	-184	1 -			5	< 100	- 10	÷		
4	243	234	4	119	91	12	< 56	21		155	164	÷	2 00		₽ 1	< 34	- 28	11	187	-177	1 4	347	-349	6	187	179		105	120
5	173	175	ż	254	-223		68	- 81	1 :	133	104	-	< 60		L _	. 84	- 97	12	242	203	1 1	52	55	7	< 95	- 25			
		01	ž	110	-105		1 10	10				_	364	358	10	< 30	- 17					< 51	- 19		263	- 258		h90	
		104	l -					105		< 65	- 9	10	< 58	2	11	146	164	1	h 72		1 10	< 44	27	,	< 90	- 14	1	68	90
	204		7			15	200			307	-313	11	222	-216				•	203	188	1 11	190	200	10	85	. 86	1	131	-144
8	318	-317	<u> </u>	< 55	21	16	< 63	2	10	< 79	- 37	12	< 56	36		h 70		1 1	306	-302	1 🚟	141	147	Ť	< 101	41	3	55	- 66
	179	-167	<u>_</u>	157	154	17	163	-160	11	78	60	13	166	-164	1	80	102	1 2	249	-247			· · · ·	÷		-10	4	184	217
10	131	122	10	209	190	18	< 56	- 4	12	140	-137				2	338	343	3	111	122	1						5	< 40	2
11	99	-91	III	217	-197	19	171	-178	13	325	297		h 64		3	149	-170	1.	< 78		1	h 74		3	< 103	- 21	6	< 34	17
12	97	105	12	52	17	20	< 49	12	14	< 73	19	0	81	- 78	4	159	-179		377	215	1 .	170	.150	1	276	- 282	, ,	78	
13	211	175	13	59	- 62	21	178	196	15	217	-198	l i	122	-124	1	< 56			221	113	1 .	170	-138	5	< 100	- 65	1		

density maps in the best planes of the two cyclopentadienyl rings (Table 5) are shown in Fig. 3.

Discussion of the structure

Molecular dimensions

The bond angles and interatomic distances were calculated from the final refined atomic coordinates

Fig. 2. The final composite three-dimensional difference map projected onto (001). The contours are drawn at 0.4, 0.6, and 0.8 e.Å⁻³. The assumed positions of the hydrogen atoms during the last least-squares refinement are indicated by crosses.

Fig. 3. Electron density maps in the best planes of the cyclopentadienyl rings. The contours are drawn at 2, 3, 4, ... e.Å⁻³.

Table 4. Magnitudes and direction cosines of the principal axes of the thermal ellipsoids

The direction cosines, q, are taken relative to a, b and c*. The root mean square deviation, U, is given by $(B/8\pi^2)^{\frac{1}{2}}$.

	Axis							Axis					
	i	B_i	U_i	qia	<i>qib</i>	q_{ic}^*		i	B_i	U_i	<i>qia</i>	q_{ib}	q_{ic}^*
Fe	1	2.93	0.192	-0.346	0.061	0.926	C(7)	1	4.19	0.231	0.854	-0.209	0.122
	2	2.39	0.174	0.925	-0.136	0.379		2	3.32	0.205	-0.003	0.182	0.983
	3	1.61	0.143	0.148	0.989	-0.002		3	1.99	0.159	0.517	0.841	-0.139
0	1	6.20	0.279	0.879	0.468	0.099	C(8)	1	6.11	0.278	0.138	-0.003	0.994
	2	4.49	0.239	0.257	-0.602	0.763		2	2.99	0.194	0.975	- 0.169	-0.108
	3	2.64	0.183	-0.397	0.647	0.639		3	1.16	0.121	0.168	0.986	-0.016
C(1)	1	3.78	0.219	-0.271	-0.165	0.940	C(9)	1	5.32	0.260	0.801	0.090	-0.567
	2	2.78	0.188	0.846	- 0.509	0.179		2	4.26	0.232	0.535	-0.546	0.660
	3	1.53	0.139	0.457	0.844	0.292		3	1.74	0.148	0.264	0.832	0.494
C(2)	1	4.30	0.232	-0.610	0.055	0.772	C(10)	1	4.05	0.226	-0.618	-0.122	0.758
	2	2.72	0.186	-0.437	0.808	-0.407		2	2.70	0.185	-0.637	0.655	-0.424
	3	2.08	0.162	0.659	0.587	0.489		3	1.81	0.152	0.458	0.746	0.497
C(3)	1	4.70	0.243	-0.502	-0.152	0.836	C(11)	1	3.80	0.219	0.483	-0.193	0.868
	2	3.41	0.208	0.035	0.980	0.197		2	2.86	0.190	0.874	0.107	-0.446
	3	1.87	0.154	0.863	-0.128	0.512		3	1.61	0.143	-0.001	0.975	0.220
C(4)	1	5.48	0.264	0.034	0.021	0.999	C(12)	1	3.95	0.224	-0.339	-0.383	0.849
	2	2.98	0.194	-0.684	0.728	-0.012		2	3.26	0.203	0.756	0.431	0.514
	3	1.97	0.128	0.727	0.685	-0·018		3	1.75	0.149	-0.558	0.817	0.127
C(5)	1	4.14	0.230	- 0.595	0.358	0.701	C(13)	1	4.96	0.251	0.023	-0.321	0.947
	2	3.02	0.196	0.700	-0.205	0.704		2	3.05	0.197	-0.211	0.922	0.319
	3	1.45	0.135	0.392	0.911	-0.118		3	2.31	0.171	0.974	0.217	0.047
C(6)	1	4.72	0.244	-0.074	-0.105	0.990							
-	2	3.09	0.198	0.767	-0.640	0.012							
	2	1.51	0.138	0.635	0.761	0.146							

and are shown in Fig. 4. The standard deviations in the positional parameters (Table 1) are approximately 0.007 Å for the oxygen and carbon atoms and 0.0009 Å for the iron atom. These values correspond to uncertainties of approximately 0.010 Å for the C–C and C–O bonds and 0.007 Å for the Fe–C bonds. The excellent agreement among the ten C–C bond lengths in the rings indicates that these standard deviations are realistic.

Temperature parameters

The magnitudes and orientations of the thermal ellipsoids for each of the heavy atoms were calculated by the method of Rollett & Davies (1955) and are listed in Table 4. The anisotropies in the thermal motions are sizable. The major and minor axes of the ellipsoids for all atoms except the oxygen atom and C(7) are oriented approximately along the *c* and *a* axes, respectively, suggesting a relatively large lattice vibration. (Since only *c*-axis data were used in the refinement of the structure, the thermal anisotropy may be, in part at least, an artifact arising from systematic errors in the data.) Superimposed on this vibration are the motions of the individual atoms; the libration of the ring carbon atoms may be clearly seen in Fig. 3.

Molecular geometry

The least-squares planes (Schomaker, Waser, Marsh & Bergman, 1959) through each of the cyclopentadienyl rings and through the carbonyl group are given in Table 5. The ring atoms do not deviate significantly from coplanarity. The three-carbon bridge causes tilting of the two cyclopentadienyl rings so they are no longer parallel as in the parent compound, ferrocene,

but without causing noticeable ring bond distortions. It also appears that there is little strain in the α -keto-trimethylene bridge, since the bond lengths and angles are quite close to the expected values. The dihedral angle between the cyclopentadienyl rings, defined here as the acute angle formed by the normals to the best planes, is $8\cdot8^\circ$.

Table 5. Best planes through the rings and the carbonyl group

The values q_i are the direction cosines of the normal to the best plane with respect to the orthogonal axes a, b, and c^* . Atoms indicated by an asterisk (*) were not included in the calculation of the plane.

Direction cosines	Atom	Deviation
$a_a = 0.613$	C(1)	—0·005 Å
$a_{h} = 0.731$	Č(2)	-0.001
$a_c^* = 0.300$	C(3)	0.006
1.	C(4)	-0.010
	C(5)	0.009
	*Č(11)	0.301
	*Fe	1.640
	*Origin	4.748
$a_a = 0.722$	C(6)	-0.006
$a_{h} = 0.622$	C(7)	0.003
$a_c^* = 0.303$	C(8)	0.001
1.	C(9)	-0.004
	C(10)	0.006
	*Č(13)	-0.123
	*Fe	-1.640
	*Origin	1.741
$a_a = 0.246$	C(1)	-0.012
$a_b = 0.929$	C(11)	0.039
$a_c^* = -0.276$	C(12)	-0.012
	0`´	-0.015
	*C(13)	-1.462
	*Origin	-2.870

Fig. 4. Bond angles and interatomic distances.

Fig. 5. The structure viewed along the c axis.

In the crystal structure of ferrocene as determined by Dunitz, Orgel & Rich (1956) the iron atoms lie at centers of symmetry and the rings are therefore staggered by exactly 36°. In our bridged ketone the rings are more nearly eclipsed, being staggered by only 11.8°. (The degree of staggering is defined here as the angle between the lines from the centroid of each ring to the carbon atom attached to the bridge after the lines have been projected onto an 'average' plane. The 'average' plane is taken so that its normal bisects the acute angle formed by the normals to the best planes through the two rings.) The average ring C-C bond length in ferrocene is 1.403 ± 0.020 Å and the average Fe-C bond is 2.045 ± 0.010 Å; for the bridged ketone these bonds are 1.424 ± 0.010 Å and 2.039 ± 0.006 Å, respectively. Thus the two determinations agree well within the estimated standard deviations.

Table 6. Intermolecular distances less than 3.7 Å

The atoms in the first column belong to the reference molecule at x, y, z.

From atom	To atom	In molecule at	Distance
C(11)	C(8)	x, $1 + y$, z	3.439
0	C(13)	$\bar{x}, 1-y, 1-z$	3.501
0	C(5)	x, y, $1 + z$	3.532
0	C(12)	$\bar{x}, 1-y, 1-z$	3.559
0	C(10)	x, y, $1 + z$	3.585
C(10)	C(13)	$\bar{x}, \bar{y}, \bar{z}$	3.606
C(4)	C(9)	$\frac{1}{2} - x, \frac{1}{2} + y, \bar{z}$	3.624
C(12)	C(8)	x, 1+y, z	3.637
C(12)	C(12)	$\vec{x}, 1-y, \vec{z}$	3.642
C(6)	C(6)	x. v. z	3.668

Molecular packing

The molecular packing as viewed along the c axis is shown in Fig. 5 and the shortest intermolecular distances are listed in Table 6. The H–H and H-heavy atom distances are not included since the coordinates of the hydrogen atoms are only assumed.

We wish to thank Dr E. A. Hill, who supplied the sample of α -keto-1,1'-trimethyleneferrocene used in this study. One of us (N. D. J.) is grateful to the Division of General Medical Sciences, United States Public Health Service for a Predoctoral Fellowship during the tenure of which this investigation was carried out.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- DUNITZ, J. D., ORGEL, L. E. & RICH, A. (1956). Acta Cryst. 9, 373.
- HILL, E. A. & RICHARDS, J. H. (1961). J. Amer. Chem. Soc. 83, 3840, 4216.
- HOERNI, J. A. & IBERS, J. A. (1954). Acta Cryst. 7, 744.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- RICHARDS, J. H. & HILL, E. A. (1959). J. Amer. Chem. Soc. 81, 3484.
- RINEHART, K. L., JR. & CURBY, R. J., JR. (1957). J. Amer. Chem. Soc. 79, 3290.
- ROLLETT, J. S. & DAVIES, D. R. (1955). Acta Cryst. 8, 125.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293,